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ABSTRACT: Observed United States trends in the annual maximum 1-day precipitation (RX1day) over the last century

consist of 15%–25% increases over the eastern United States (East) and 10% decreases over the far western United States

(West). This heterogeneous trend pattern departs from comparatively uniform observed increases in precipitable water

over the contiguousUnited States. Here we use an event attribution framework involving parallel sets of global atmospheric

model experiments with and without climate change drivers to explain this spatially diverse pattern of extreme daily pre-

cipitation trends.We find that RX1day events in ourmodel ensembles respond to observed historical climate change forcing

differently across the United States with 5%–10% intensity increases over the East but no appreciable change over the

West. This spatially diverse forced signal is broadly similar among three models used, and is positively correlated with

the observed trend pattern. Our analysis of model and observations indicates the lack of appreciable RX1day signals over

theWest is likely due to dynamical effects of climate change forcing—via a wintertime atmospheric circulation anomaly that

suppresses vertical motion over the West—largely cancelling thermodynamic effects of increased water vapor availability.

The large magnitude of eastern U.S. RX1day increases is unlikely a symptom of a regional heightened sensitivity to climate

change forcing. Instead, our ensemble simulations reveal considerable variability in RX1day trend magnitudes arising from

internal atmospheric processes alone, and we argue that the remarkable observed increases over the East has most likely

resulted from a superposition of strong internal variability with a moderate climate change signal. Implications for future

changes in U.S. extreme daily precipitation are discussed.
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1. Introduction

The intensity of extreme daily precipitation has increased

over the contiguous United States. A nationally averaged up-

ward trend is robust across analyses spanning different his-

torical periods, for example commencing at the beginning of

the twentieth century (Karl and Knight 1998; Westra et al.

2013), emerging from the 1930s’ Dust Bowl era (Kunkel et al.

1999), and also since the 1950s (Dittus et al. 2015). The ob-

served increase at this continental scale is attributable in part

to human-induced climate change (Min et al. 2011; Dittus et al.

2016; Paik et al. 2020; Kirchmeier-Young and Zhang 2020)

consistent with the physical link between rising greenhouse gas

concentrations, global warming, atmospheric moistening, and

the constraint that water vapor exerts on extreme precipitation

intensity (e.g., Trenberth 1999; Allen and Ingram 2002; Allan

and Soden 2008; O’Gorman and Schneider 2009).

The U.S. trend is part of a larger-scale pattern of heavy

precipitation increase that has been observed across middle

and higher latitudes. Model simulations reveal a dominant

thermodynamic effect of climate change over those regions

whose trend magnitudes scale approximately with the Clausius–

Clapeyron (C-C) rate of 7% 8C21 (Emori and Brown 2005; Pall

et al. 2007; Fischer and Knutti 2016). Dynamic contributions

of climate change to extreme precipitation, as inferred from

changes in tropospheric vertical velocities, can modify this oth-

erwise spatially homogeneous thermodynamic contribution.

However, analysis based on climate model simulations of phase

5 of the Coupled Model Intercomparison Project (CMIP5) in-

dicate that significant dynamical effects appear to be confined to

the tropics and the Mediterranean region. As such, a rather

homogeneous increase in extreme daily precipitation is gener-

ally expected to arise in themidlatitudes due to amostly spatially

invariant increase in moisture availability (Pfahl et al. 2017).

Yet, the regional pattern of observed heavy precipitation

trends across the United States departs from this theoretical

expectation, being remarkable for its heterogeneity rather than

the more uniform structure that thermodynamic effects alone

would predict. Recent assessments have emphasized the strong

increases over the U.S. Northeast and Midwest where percent

changes since the early twentieth century have far exceeded a

rate suggested by C-C scaling (Easterling et al. 2017; USGCRP

2018). By contrast, theU.S. Southwest has exhibited declines in

heavy precipitation intensity.

The regionally diverse trends in extreme precipitation are

likely related to dynamical factors. Over the Northeast, up-

ward trends in both extratropical cyclone-related and tropical

cyclone-related extreme precipitation have been observed

during 1908–2009, whereas a downward trend in extratropical
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cyclone-related extremes has occurred in the U.S. Southwest

(Barlow 2011; Kunkel et al. 2012). The Southwest decline in

heavy precipitation events has been further linked to dynamics

of atmospheric teleconnections in response to decadal varia-

tions in tropical Pacific sea surface temperature (SST; Hoerling

et al. 2016). The extent to which such regionally diverse

dynamical mechanisms for heavy precipitation change may

reflect long-term climate change effects is, however, not cur-

rently known. Assessment reports to date have emphasized the

current understanding of observed trends for national averages

of heavy precipitation, arguing those to be explainable by well-

established physical constraints and expectations in a warming

world (Easterling et al. 2017; USGCRP 2018). But the nature

of the diverseness in regional trends in heavy precipitation

changes across the contiguous United States does not align

with a simple thermodynamic argument, motivating research

into its possible dynamical origins.

It is generally agreed that multidecadal variability can dic-

tate the characteristics of trends at local-to-regional scales

(Deser et al. 2014; Fischer and Knutti 2014; Hoerling et al.

2016; Fischer et al. 2014). As such—and perhaps this recogni-

tion informs a prevailing view—the spatial heterogeneity in

U.S. heavy precipitation trends is plausibly suspected to reflect

internal variability. If true, one should expect a slowing in the

rate of heavy precipitation rise in the Northeast and a reversal

in the downward trend in the Southwest, thereby tending to a

more uniform spatial pattern expected from thermodynamics

of climate change. But such suppositions must first be placed

on firmer grounds that include diagnosing both thermody-

namic and dynamic effects of climate change and comparing

the resulting overall signal of forced change to the trend pat-

terns that can arise from purely naturally occurring internal

variations.

In this study, we explore the causes for the spatially het-

erogeneous pattern of U.S. extreme precipitation change ob-

served over the last century. Our focus keys on the question

whether such a pattern could be a manifestation of anthropo-

genic climate change. Our approach builds on prior studies that

stress the importance of using large multimember ensembles of

model runs––and also the use of multiple models—for robustly

identifying forced signals of extreme precipitation change re-

gionally (e.g., Fischer et al. 2014). Also, recognizing the im-

portance of horizontal resolution on the quality of simulated

extreme precipitation, this study employs global models conducted

at a nominal 50-km resolution, which has been deemed a ‘‘break-

through’’ resolution (Wehner et al. 2010, 2014; van der Wiel et al.

2016) for achieving realistic magnitudes of annual maximum daily

precipitation intensity compared to 100- and 200-km spatial reso-

lutions employed in most CMIP3 and CMIP5 models and many

CMIP6 models.

The experimental approach applies an event attribution

framework that has been used previously to assess climate

change effects on individual extreme events (NationalAcademy

of Sciences Engineering and Medicine 2016), and also in ex-

plaining long-term trends at regional scales [see Hoerling et al.

(2019) and references therein]. Parallel sets of atmospheric

model simulations are conducted, one inwhich the ocean surface

and sea ice boundary condition and atmospheric chemical

composition are prescribed to vary as observed under recent

climate conditions of the early twenty-first century (factual

simulation) and the other which experiences nearly identical

interannual and decadal variations as if such variations had oc-

curred under climate conditions at the turn of the twentieth

century (counterfactual simulation). The method of running

pairs of atmospheric models—one including all forcings and the

other only natural forcings (including an estimate of internal

boundary conditions)—is the backbone of event attribution

systems used in the broader community (e.g., Christidis et al.

2013; Massey et al. 2015; Ciavarella et al. 2018). Each of these

systems is based primarily on a single atmospheric modeling

system, uses very large ensembles, and employs high horizontal

resolution (e.g., the Wx@Home approach of Massey et al. is

performed at ;40-km resolution, and the Hadley Center attri-

bution system of Ciavarella et al. at;60 km in themidlatitudes).

Our analysis is conducted at similar spatial scales and utilizes

three different atmospheric models to further probe robustness

to structural model uncertainty. We focus on the comparison of

extreme precipitation statistics between such pair of simulations,

thereby contrasting their characteristics in the current warm

world to that in an appreciably colder world of about a century

earlier.

Section 2 describes the models and methods used herein in

detail. The quality of daily rainfall in the models compared to

observations over the contiguous United States is evaluated in

section 3. The principal metric of extreme precipitation to be

studied herein is the annual maximum 1-day precipitation

(RX1day), for which simulations of both its climatological in-

tensity and seasonal cycle are first evaluated. Results on cli-

mate change sensitivity of RX1day are presented in section 4.

Using a non-fingerprint-based detection and attribution

method that focuses on pattern-based agreement of observed

and modeled changes, (e.g., van Oldenborgh et al. 2013;

Knutson et al. 2013;Wuebbles et al. 2017) the observed pattern

of RX1day change is interpreted in the context of a pattern

attributable to climate change and a pattern due to internal

variability. Section 4 interprets the forced pattern of RX1day

in both a thermodynamic and dynamic context, the former

inferred from the relationship between simulated RX1day and

precipitable water change and the latter inferred from forced

signals of large-scale atmospheric circulation changes. A

summary and concluding remarks appear in section 5.

2. Datasets and model experiments

a. Observations

Precipitation data are from the gauge-based daily gridded

Climate Prediction Center (CPC) Unified analysis (Xie et al.

2007). These are based on approximately 8000 observation lo-

cations over the contiguous United States frommultiple sources

including the Global Telecommunication System (GTS),

Cooperative observers (COOP), and other national agencies

(Chen et al. 2008). The daily data are gridded at 0.258, and the

period of analysis is 1948–2018.

The study also uses a 18 gridded daily precipitation dataset

for 1901–2018 that is based on the Global Historical Climate
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Network of daily station records (GHCN-D), though having

sparser availability in early decades (Menne et al. 2012).

For the same 70-yr historical period, reanalysis products of

total column precipitable water (PW) and tropospheric geo-

potential heights are analyzed to describe thermodynamic and

dynamic changes accompanying heavy precipitation change.

The data sources are NCEP–NCAR reanalysis (Kalnay et al.

1996), the Twentieth Century Reanalysis, version 3 (20th CRv3;

Compo et al. 2011), and the JRA-55 product (Kobayashi et al.

2015). The NCEP–NCAR data span the entire 1948–2018 pe-

riod, the 20th CRv3 used herein spans 1948–2015, and JRA-55

covers 1958–2018.

b. Climate models and experiments

Three global atmospheric models (Table 1) are used, which

are identical to those studied previously in Hoerling et al.

(2019): the National Center for Atmospheric Research

Community Atmospheric Model (CAM5; Neale et al. 2012),

the European Centre for Medium-Range Weather Forecasts/

Hamburg model (ECHAM5; Roeckner et al. 2003), and

Japan’s Meteorological Research Institute model (MRI3.2;

Mizuta et al. 2017). Each model represents horizontal scales in

middle latitudes of;50 km. Themodel variables examined are

RX1day (derived from statistics of daily precipitation), PW,

700-hPa geopotential heights, and 500-hPa vertical velocity.

For brevity, the models are subsequently referred to as CAM,

ECHAM, and MRI. The authors performed the CAM and

ECHAM model runs, while the MRI runs were performed by

the Japanese Meteorological Research Institute.

Pairs of atmospheric simulations are conducted for each

model. One, referred to as the factual experiment, simulates

climate near the turn of the twenty-first century subjected to

specified recent observed boundary conditions and atmo-

spheric chemical composition. Monthly SST and sea ice con-

centration variations are based onHurrell et al. (2008) in CAM

and ECHAM, and on the Centennial In Situ Observation-

Based Estimates of the Variability of SST and Marine

Meteorological Variables, version 2 (COBE-2; Hirahara et al.

2014), in MRI. Greenhouse gases (GHGs), aerosol, and ozone

variability in CAM and MRI use the protocol of CMIP5 his-

torical forcings for 1901 through 2005 (see Neale et al. 2012;

Mizuta et al. 2017). For ECHAM, GHGs vary according to the

observed concentrations (Meinshausen et al. 2011), while tro-

pospheric and stratospheric ozone vary based on Cionni et al.

(2011). Aerosol concentrations do not vary interannually in

ECHAM nor do they undergo any long-term trends. Long-

term aerosols trends, which are believed to play a role in

extreme precipitation trends, are not included in the ECHAM

experiments (e.g., Lin et al. 2016; Mascioli et al. 2016).

The CAM and ECHAM extensions after 2005 assume

RCP6.0 forcing, while MRI assumes RCP8.5 forcing. The pe-

riod of these historical runs is January 1979–December 2018

for CAM and ECHAM, and 1950–2010 for MRI.

The counterfactual experiments simulate climate near the

turn of the twentieth century in which the boundary conditions

and atmospheric composition are specified as if global warming

had not occurred. The procedures follow those used in extreme

event attribution studies (e.g., Pall et al. 2011; Stott et al. 2013;

Christidis et al. 2013; Massey et al. 2015; Sun et al. 2018), and

the specific methods applied to the current suite of simulations

are described in Hoerling et al. (2019). The experiments are

based on atmospheric models that are forced with monthly

varying boundary conditions that retain the interannual and

decadal variability of present-day climate occurring in the fac-

tual simulation but in which estimates of long-term ocean

warming have been removed.Additionally, theGHGand ozone

concentrations are set to turn of the twentieth-century values.

Concerning ocean boundary conditions, counterfactual SSTs

are generated by removing an observed annual linear SST trend

from the full variability. Detection of the anthropogenic com-

ponent of long-term trends has, to date, been most robust for

large spatial averages such as zonal means, whereas some re-

gional patterns may be more significantly impacted by internal

decadal variability (Knutson et al. 2013). Here, two different

techniques are used in constructing the ‘‘pre–global warming’’

ocean boundary states; details of the model configurations and

counterfactual development for CAM and ECHAM are pro-

vided in Sun et al. (2018), and those for MRI are in Mizuta et al.

(2017). Only zonally averaged values of the trends are removed

in CAM and ECHAM for the period 1880–2011. For MRI, a

similar approach is used in that the SST warming pattern is also

derived from observations except that the baseline for de-

trending is the beginning of the twentieth century, and trends at

each grid point are removed rather than zonal averages. These

two SST warming patterns are shown in Fig. 1 (left panels). All

zonally averaged latitude bands exhibit warming having largest

magnitudes of 0.68–0.88C in the tropics and Southern Ocean

(top). The regional structure of the observed SST trends is

characterized by greater warming in the Indian Ocean and

tropical western Pacific relative to the tropical eastern Pacific

(bottom; see also Solomon and Newman 2012). For comparison

to these observed SST change patterns, Fig. 1 (right) shows

SST trends from a 22-model average of CMIP6 historical

simulations. The general agreement in magnitudes of

TABLE 1. Atmospheric model description.

Model Resolution Vertical levels Cumulus parameterization Ensemble

CAM5 0.458 3 0.68 (;50 km) 30 levels Zhang–McFarlane 18

2 hPa top

ECHAM5 T157 (nominal 75 km) 31 levels Tiedtke 50

10 hPa top

MRI-3.2 T319 (nominal 60 km) 64 levels Arakawa–Schubert 25

0.01 hPa top
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observed ocean warming and the ensemble simulated changes

occurring in response to external radiative forcing suggest that

the former can be broadly understood as resulting from

human-induced climate change. A formal attribution of the

observed SST trends is not conducted, however, and we rec-

ognize that some features of the observed changes likely in-

clude manifestations of internal coupled ocean–atmosphere

variability. The responses in factual versus counterfactual exper-

iments are therefore strictly indicative of sensitivity to observed

changes in boundary forcings over roughly the last century, and

not necessarily due to anthropogenic climate change forcing

alone. Our intercomparison of results from CAM and ECHAM

models with the MRI model—which does include the full-field

SST trends—permits study of robustness of RX1day sensitivity

among experiments that include and exclude the possible effects

of changes in east–west SST gradients (see Fig. 1).

A potential strength of using AMIP methods versus a CMIP

approach is that the former is subjected to observed SSTs and

their variations, thereby removing effects of the large SST

biases that exist in coupled models. Some prior event attribu-

tion methods with atmospheric models have included CMIP

SST trends as a way to estimate the climate change signal in

ocean boundary conditions, together with observed trends

(e.g., Christidis et al. 2013; Massey et al. 2015). The different

methods of framing attribution based on coupled versus at-

mospheric models is discussed by Christidis et al. (2018), who

noted that the largest uncertainty in their analysis of climate

change impacts on the U.K. warm/wet winter of 2015/16 arose

from assumptions about the SST change pattern. Here we have

used only long-term SST trends based on observations. It re-

mains an open question as to the best approach for determining

the pattern of global SSTwarming, and thus the best procedure

for counterfactual construction. Our study employs two dif-

ferent approaches for generating such global warming pat-

terns and those provide some measure of uncertainty to the

counterfactual design.

c. Diagnosing climate change impacts on RX1day

For each model, and for both factual and counterfactual

experiments, an ensemble of simulations is generated whereby

each member of a particular model experiences identical time

evolving boundary forcing but initialized from different at-

mospheric initial states. In this study, 18, 50, and 25 members of

the CAM, ECHAM, and MRI model, respectively, are analyzed.

For the recent 20-yr period 1999–2018, we calculate the

factual minus counterfactual differences of RX1day, PW, and

geopotential heights to quantify the effects of changes in cli-

mate drivers that have taken place over roughly the last cen-

tury. For theMRImodel whose simulations end in 2010, we use

the 20-yr period of 1991–2010. We have verified, from the

CAM and ECHAM data, that the simulated climate sensitivities

are not materially different between contrasting the paired ex-

periments for 1999–2018versus 1991–2010 (not shown).Themodel

sensitivities to climate change are compared with observed trends,

FIG. 1. (left) Observed SST trends (total change; 8C) used in the construction of counterfactual SST boundary

conditions for (top) CAMandECHAMand (bottom)MRImodel experiments. The former are based onERSSTv3

analyses and the latter on COBEv2 analyses. (right) Simulated SST trends in CMIP6 historical experiments based

on an average of 22 models. The zonally averaged trend patterns in top panels are for 1880–2011. The two-

dimensional trend patterns in bottom panels are for 1900–2011.
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calculated from 1999–2018 minus 1948–67 differences. We find

that the observed RX1day changes are qualitatively similar when

calculated from a smaller set of available stations that extend to

1901, and thus the post-1948 change highlighted herein is repre-

sentative of a longer-term change pattern (see Fig. S1 in the online

supplemental material).

The ensemble and paired modeling approach permit con-

struction of a large sample of centennial-scale changes.

Because ensemble members are effectively independent sam-

ples of atmospheric variability, any combination of factual and

counterfactual simulation could occur with equal likelihood.

For CAM, a total of 324 (18 3 18) unique centennial differ-

ences are generated, whereas a total of 2500 (503 50) and 625

(25 3 25) differences are calculated for ECHAM and MRI,

respectively, where the numbers in parentheses denote the

number of factual and counterfactual experiments. The forced

component of change (i.e., the signal) is derived from the en-

semble mean of differences, while the internal component (i.e.,

the noise due solely to atmospheric sampling variability) is

estimated from the spread among ensemble members. We

apply a simple detection and attribution approach to explain-

ing the character of observed RX1day changes over the last

century. The observed changes, in particular the U.S. pattern

of RX1day changes, are compared with the statistics of simu-

lated changes to determine the extent to which the former is

consistent with variability that includes or excludes climate

change drivers. This approach is referred to as a non-fingerprint-

based approach to detection and attribution (Wuebbles et al.

2017), and we note that our signal detection is computed with

respect to atmospheric variability alone, with the oceanic (SST

and sea ice) differences being the same in each run, thus un-

derestimating the true natural variability.

3. Climatological daily precipitation in observations and
models

Smoothed histograms [nonparametric probability density

functions (PDFs)] of climatological daily precipitation are

shown for two selected grid points, one in vicinity of San

Francisco, California (Fig. 2, top), and the other near Boston,

Massachusetts (Fig. 2, bottom), as an illustration of model

capabilities and biases. These two regions are selected for

analysis because they anchor locations having very different

observed trends in extreme daily precipitation as will be shown

FIG. 2. Histograms of daily precipitation (mmday21) for a grid box in (top) central California near San Francisco and (bottom) coastal

New England near Boston. Observations (red curve) are based on 1948–2018 CPC gridded daily analysis, model (blue curves) based on

individual members of historical AMIP simulations for 1979–2018 based on (left) CAM and (center) ECHAM, and for 1979–2010 based

on (right) MRI. All precipitation days exceeding 1mmday21 are included. The probability distribution functions are nonparametric

curves constructed using the R software program, which utilizes a kernel density estimation and a Gaussian smoother.
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in section 4. For each model, the PDFs are displayed for the

ensemble of present-day (factual) climate simulations (blue

curves). These are superposed on the CPC Unified gridded

estimate of observations (red curve). For the central California

location, CAM underestimates heavy precipitation events

with a notable excess of light daily rain events, even when ac-

counting for sampling uncertainty among ensemble members.

By contrast, MRI overestimates the frequency of heavy events,

whereas the ECHAM histograms most closely capture the

behavior seen in observations across the range from light to

heavy rain days. That is, the observed distribution is a more

likely occurrence in the ECHAM ensemble, whereas it is at or

near the extremes of the other two model ensembles. The

CAM and ECHAMmodels are somewhat in better agreement

with each other and with observations in the Northeast.

Table 2 summarizes the magnitudes of climatological daily

totals for various conventional extreme thresholds. In obser-

vations, both locations experience very similar magnitudes for

their 95th-, 99th-, and 99.9th-percentile daily event, roughly 30,

50, and 90mm, respectively. These are compared to the aver-

age thresholds for each of the models, including the standard

deviation among ensemble members that indicates the sam-

pling variability for these various extreme event magnitudes.

For both locations, the model threshold magnitudes tend to

exceed the observed threshold. Note that since the observed

data used here are grid averages, it is expected that individual

stations would experience somewhat greater threshold mag-

nitudes. Nonetheless, when compared to collocated model

grids, this spatial average of the observed regional climatology

including its quantitative character is well captured in CAM

and ECHAM simulations within the sampling uncertainty.

MRI in contrast significantly exceeds the observed extreme

event magnitudes for rainfall in vicinity of San Francisco, even

when accounting for sampling variability, although it is more

closely aligned with observations for rainfall extremes in the

vicinity of Boston.

The spatial distribution of the magnitude for the climato-

logical wettest day of the year (RX1day) in shown in Fig. 3

(right) for the entire contiguous United States. The signature

of relatively arid climates to the west of about 1008W longitude

and humid climates east is evident in the RX1day patterns

of both observations and models. Terrain organization of

RX1day is also strong in the far West, and the key features of

maxima in the Cascades, Sierras, and Rockies are fairly well

captured at these approximately 50-km resolved model simu-

lations. On larger scales, RX1day magnitudes are greatest in

the vicinity of the Gulf Coast and the Southeast. This feature is

also well represented in the models, although the magnitude of

the RX1day is generally too low along the Gulf Coast.

A key feature of annual RX1day is its distinct seasonality

over the contiguous United States. Shown in Fig. 3 (left) is the

season during which RX1day events tend to occur based on

resolving the annual cycle into six nonoverlapping 2-month

periods (January/February, March/April, etc.). The timing of

the wettest day tends to conform to the seasonal cycle of cli-

matological mean precipitation itself, notwithstanding that

heavy daily rains also occur in warm season convection. Over

the far West, the wettest days are observed in late fall and

winter, whereas a late spring maximum is found over most of

theGreat Plains (top). These timings are realistically simulated

in each of the three models used herein (lower three panels).

Likewise, over much of the Northeast and mid-Atlantic, an

early fall (September/October) preference for RX1day oc-

currence is seen in observations, a feature also evident in most

of the models. However, a fall maximum that also occurs over

the Southeast is not as well captured in the models, in part

owing to contributions from tropical storms whose simulation

is deficient in the models used herein. Larger model discrep-

ancies also arise in areas experiencing less distinct wet seasons

(e.g., the Ohio Valley). Here, the RX1day occurrences have

only a modest preference between adjacent seasons, and thus

sampling alone can account for some of the differences be-

tween observations and models.

In all three models, summer (July/August) occurrences of

RX1day are much less frequent than observed. This is espe-

cially noteworthy over Arizona and New Mexico where the

heaviest rain days tend to be observed during their summer

monsoon season, but aremore likely to occur in the cold season

associated with wintertime cyclones in the models. This bias

arises in part because the models are too wet over the

American Southwest during winter, whereas the monsoon

rains fail to penetrate as far northward into the American

Southwest in summer (not shown). The upper Midwest also

tends to experience the wettest rain days in July/August, rather

than in late spring as is simulated in the models. This region is

prone to heavy rain events frommesoscale convective systems,

the occurrences of which are poorly simulated in climate

models that rely on convective parameterization (e.g., Prein

et al. 2017) as is the case of each of the models used herein.

4. The U.S. pattern of heavy daily precipitation change

a. The signal of historical U.S. RX1day change

The observed change pattern of U.S. heavy daily precipita-

tion is noteworthy for its spatial diversity characterized by

large increases over the East and decreases over the West

(Fig. 4, top). Results are shown for spatially aggregated

changes over 18 USGS water resource regions so as to reduce

the noise inherent at the grid point scale, but also to provide a

TABLE 2. Climatological thresholds for observed and model ex-

treme daily precipitation (mm).

95th percentile 99th percentile 99.9th percentile

California

OBS 33.0 50.5 92.5

CAM 32.9 6 1.5 54.4 6 2.9 85.7 6 10.1

ECHAM 39.7 6 1.8 64.4 6 3.2 95.8 6 9.3

MRI 42.0 6 2.0 71.2 6 3.8 111.0 6 11.0

New England

OBS 31.0 55.7 88.7

CAM 33.9 6 1.1 57.5 6 2.3 90.6 6 8.0

ECHAM 34.6 6 1.0 58.3 6 2.5 94.1 6 7.9

MRI 32.8 6 0.8 55.7 6 1.8 96.5 6 9.2
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finer granularity than the seven large-scale U.S. regions used to

summarize observed heavy precipitation changes in the

National Climate Assessment (USGCRP 2018, see their

Fig. 2.7). Grid-level magnitude changes in RX1day are aver-

aged for the various regions, and then expressed as a per-

centage change for the region as a whole. The magnitude of

percentage increases for the mid-Atlantic basin is about 25%,

while adjacent river basins over New England and the Great

Lakes area have observed 15% increases. Broad-scale 10%

increases in RX1day have occurred over the Ohio River basin,

and the upper and lower Mississippi River catchments.

RX1day changes are considerably smaller from the Missouri

River basin westward with decreases observed overmost of the

West including the upper Colorado River, the Pacific

Northwest, the Great Basin, and the California basin where a

10% decline is observed. The RX1day change pattern since the

mid-twentieth century is similar to that since the beginning of

the twentieth century based using a sparser network of his-

torical GHCN daily data beginning in 1901 (see Fig. S1).

This spatial diversity in heavy daily precipitation trends is

superposed on an overall nationally averaged intensification.

The recent 20-yr period compared to the mid-twentieth cen-

tury has experienced a 6% increase in RX1day magnitudes,

dominated by the much greater rises over the East. The

national-scale change compares to a similar 6% increase in

annual column precipitable water averaged over the United

States (PW; Fig. 4, bottom1), close to a Clausius-Clapeyron

scaling given the observed ;0.98C rise in global mean surface

temperature since 1950. All regions of the United States have

experienced PW increases, implying that the reversal in sign of

FIG. 3. (right) Magnitude of the climatological wettest day (RX1day; mm) and (left) seasonality for the occur-

rence for RX1day in (top to bottom) observations, CAM, ECHAM, and MRI simulations. Observations based on

1948–2018 period, and models based on the ensemble average of AMIP simulations for 1979–2018 for CAM and

ECHAM, and for 1979–2010 for MRI.

1 The common period for the reanalysis products begins in 1958,

and the reference period for PW change is 1958–1977, rather than

the 1948–67 period used for RX1day. We note that there is little

qualitative difference when the RX1day changes are calculated

using a 1958–77 reference. Figure 4 (bottom) uses the average of

NCEP–NCAR, JRA-55, and 20thCRv3 products.
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RX1day trends when transecting from the eastern to the

western United States is broadly inconsistent with notions of

thermodynamic control that is implied by the PW change

pattern.

We turn to the climate model simulations in order to un-

derstand these observed changes and to more rigorously

quantify the overall effect of historical climate change forcing

on U.S. heavy daily precipitation. Figure 5 shows the ensemble

mean differences between factual and counterfactual simulations

of annual PW (left) and RX1day (right). All three models exhibit

atmospheric moisture increases across the contiguous United

States with modestly larger increases over the northern and

eastern sections, the patterns and magnitudes of which are in

general agreement with the reanalysis estimates of observed

change. For national averages, the simulations yield 7%, 6%, and

7% increases in precipitable water for CAM, ECHAM, andMRI

models, respectively. Again, these increases in water vapor

availability are consistent with expectations of global warming

and the rise in global surface temperature of 0.88–0.98C occurring

in the factual relative to counterfactual simulations.

The wettest day of the year becomes wetter under climate

change forcing over most regions of the United States in each

of the model ensembles (Fig. 5, right). For averages over the

contiguous United States, increases are 2%, 5%, and 3% for

CAM, ECHAM, and MRI, respectively. These are smaller

than the simulated increases in water vapor availability, con-

sistent with CMIP model results that have also found extreme

daily precipitation over the extratropics to increase less rapidly

than available atmospheric moisture content (O’Gorman and

Schneider 2009). There are several possible physical reasons.

One is that air masses in which extreme midlatitude precipi-

tation occurs are often warmer than climatological local con-

ditions due to advection, and these source regions respond to

global warming differently (O’Gorman and Schneider 2009). A

second factor, quantified in O’Gorman and Schneider (2009),

is that the rate of condensation depends on vertical gradients of

saturation specific humidity which can increase by as little as

half the rate of saturation specific humidity itself. Another is a

decline in near-surface relative humidity over the continental

United States occurring in our model experiments (not shown), a

feature also noted in observations (e.g., Willett et al. 2014) and

other global model simulations (Byrne and O’Gorman 2016). A

reduction in lower tropospheric relative humidity has been argued

to reduce precipitation efficiency (e.g., Ye et al. 2014; Cheng et al.

2018) in that greater airmass ascent is required to achieve con-

densation, which would thereby occur at cooler temperatures

thus offsetting some of the effects of increased column

precipitable water.

The model signals of heavy daily precipitation change reveal

considerable spatial heterogeneity, especially for ECHAMand

MRI. The largest increases occur east of the Missouri River

basin ranging from 5% to 10%. (Fig. 5, right). Smaller in-

creases are simulated across the West, with a signal of de-

creased intensity over the Southwest. ECHAM and MRI

exhibit similar RX1day sensitivities across the United States

as a whole, and their ensemble mean signals better agree with

the pattern of strong west–east contrast evident in the obser-

vations. It is worth noting that simulated declines in each

model occur over the Southwest, whereas the largest observed

decline (since 1948) occurs over the Pacific Northwest. While

biases in the models’ RX1day regional sensitivities may exist,

sampling uncertainty of the regional pattern is also to be noted,

for instance as is evident by a more pronounced Southwest

decline in observed trends calculated from 1901 (see Fig. S1)

and by a strong sampling uncertainty in centennial-scale

changes among individual model realizations that are dis-

cussed further below. The CAM RX1day sensitivity is by

FIG. 4. (top) The observed changes in wettest day of the year

(RX1day) and (bottom) column precipitable water (PW). RX1day

change calculated as the difference of (1999–2018) minus (1948–

67). PW change calculated as the difference of (1999–2018) minus

(1958–77). RX1day and PW change are calculated at grid scales,

aggregated to the basin scales, and then expressed as the percent-

age difference relative to the mid-twentieth-century climate. Map

outlines are of the 18 USGS major river basins.
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contrast generally weaker and more spatially homogeneous,

and its virtual absence of change over the mid-Atlantic basin

contrasts strikingly with observations. These model structural

differences and their origins are diagnosed and discussed fur-

ther in sections 4b and 4c. Here it is sufficient to note that none

of themodels generate a forced signal of intensification as large

as the 25% increase observed in the mid-Atlantic basin, either

over that basin or over any other U.S. river basin (note that the

contour range of simulated RX1day change in Fig. 5 has been

reduced to facilitate comparison with observations). Nor do

they generate a forced signal of decline as large as the 10%

decrease over the far West. Underestimates of observed am-

plification of daily rainfall extremes have been previously

noted in CMIP models and are typically attributed to coarse-

ness of spatial resolution (e.g., Allan and Soden 2008). Yet,

results of section 3 suggest the models used herein credibly

FIG. 5. (left) The simulated changes in column precipitable water (PW) and (right) wettest day of the year

(RX1day). Shown are the ensemble mean changes of the factual minus counterfactual simulations of 1999–2018 for

the (top) CAM, (middle) ECHAM, and (bottom) MRI models. RX1day and PW change calculated are calculated

at model grid scales, aggregated to the basin scales, and then expressed as the percentage difference relative to the

models’ counterfactual climate. Maps and contouring are as for observations except that the RX1day scale is

reduced compared to that in Fig. 4.

1 APRIL 2021 HOERL ING ET AL . 2767

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 06/30/21 03:24 PM UTC



produce the climatological intensity of extreme precipitation

over many U.S. regions, although biases were also identified

especially where convection is an important contributor. The

role of sampling variability, to be assessed in section 4b, has

been recognized as important which can also account for dif-

ferences between regional intensification in historical trends

compared to forced responses in ensemble simulations––even

for centennial scales (Fischer et al. 2014).

To summarize the key finding regarding the forced re-

sponses, potential model biases notwithstanding, the sensitivity

of U.S. RX1day to climate change forcing over the last century

is spatially diverse, being characterized by larger increases in

the East compared to the West. Such a pattern is analogous to

observed trends for data beginning in 1901, when station cov-

erage was sparser and less abundant, and since 1948 whenmore

complete observations became available. Using the observed

trend pattern of RX1day since 1948, we find positive spatial

congruences (correlations) of the modeled U.S. signals of 0.5

(0.2), 0.7 (0.6), and 0.5 (0.3) for CAM, ECHAM, and MRI,

respectively. The congruences, which measure the full field

similarity, are higher because the models and observations

each produce a nationally averaged increase in RX1day in-

tensity. Importantly, upon removing this overall increase, there

continues to be considerable spatial agreement indicating that

the regional contrasts in observed trends may be interpretable

as an articulation of climate change. A strong west–east con-

trast is particularly evident in simulated change signals of

ECHAM5 and MRI after removing their contiguous U.S. in-

creases (see Fig. S3). Structural uncertainty in the forced signals

is however also noteworthy, with one of the models (CAM)

exhibiting weaker RX1day responses to climate change and less

spatial diversity in its U.S. signal.

b. Robustness of U.S. RX1day change pattern to natural
variability

The spatial agreement between the historical RX1day trend

pattern and our simulated ensemble mean response patterns

may be an artifact of noise in the single observed record rather

than strong evidence for nature’s climate change sensitivity. To

address this sampling issue, the parallel-pair constructs of our

model simulations are leveraged to calculate spatial agree-

ments between each factual versus counterfactual difference

map and the observed trend, the results of which are summa-

rized by histograms in Fig. 6 comprised of 364 CAM, 2500

ECHAM, and 625 MRI change map comparisons. The vast

majority of the simulated change maps are congruent with the

observed pattern (top curves). Upon removing the area-

averaged values, the histograms of the resulting correlations

for ECHAM and MRI affirm that the majority of simulated

model changes continue to agree in pattern with the observed

change (lower curves). The population samples of CAM cor-

relations show little systematic preference for a spatial pattern

agreeing with observations, and consistent with the results of

Fig. 5 its histogram departs significantly from those of the other

two models. We interpret these results, in aggregate across the

three models, to indicate that the positive congruence and

correlation of the historical RX1day trend pattern with the

simulated ensemble mean responses (most evident in the

ECHAM and MRI simulations) is not an artifact of sampling

noise, but expresses the presence of a climate change signal.

We next inquire into the magnitudes of RX1day changes at

regional scales and how strongly those are determined by his-

torical climate change forcing since the early twentieth cen-

tury. Figure 7 examines the statistics of changes for each of the

models averaged over the mid-Atlantic basin of dramatic ob-

served increases and over the California basin of observed

declines. The changes in these two regions anchor the west–east

FIG. 6. Histograms of the spatial pattern agreement between

observed andmodel-simulatedRX1day changes for the contiguous

U.S. region based on (top) congruence and (bottom) correlation.

Data are compared on a 58 latitude3 58 longitude grid. Histograms

are derived from 324 CAM (blue), 2500 ECHAM5 (green), and

625MRI (purple)map comparisonswith the observed changemap.

The probability distribution functions are nonparametric curves

constructed using the R software program, which utilizes a kernel

density estimation and a Gaussian smoother.
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gradient of observed RX1day trends of Fig. 4. The probability

distributions exhibit considerable spread for both basins in each

of the threemodels. The effect of internal noise could thus alone

yield appreciable change in RX1day magnitudes even on the

centennial time scale.

For the mid-Atlantic (Fig. 7, top), the majority of ECHAM

and MRI simulations yield increases in RX1day values,

indicating a constraining effect of climate change on the di-

rectionality of heavy rainfall responses. The histograms of

ECHAM and MRI both indicate that the most likely magni-

tude increase in recent decades compared to the early twenti-

eth century is about 8%. These signals correspond to about 1.2

standardized departures (see Table 3), which are statistically

significant at the 5% level. In contrast, the CAM histogram is

again significantly different from the other models, indicating

no preference for either increased or decreased RX1day

magnitudes in themid-Atlantic. The spread among the samples

of centennial change inRX1day is very similar among the three

models (standard deviation of RX1day percentage change is

5%–6%). Thus, an increase as great as the 25% observed in-

tensification, while clearly far in excess of the climate change

signal as per each of our models, can best be reconciled with an

interpretation of strong internal variability superposed on a

moderate forced change. To be sure, relatively few simulated

samples achieve change magnitudes as large as observed (red

tic mark), and then only in the two models having larger

signals––the CAM statistics indicate that a 25% intensification

could not have occurred over the last century. The model re-

sults, taken collectively, imply that a particularly large articu-

lation of internal variability most likely operated in the mid-

Atlantic basin in order to account for its outsized RX1day

change relative to other river basins in the United States. We

cannot rule out the possibility that a dimension of forcing that

we did not investigate, such as the change pattern in SSTs, or

that model biases in sensitivities to forcing have adversely af-

fected responses, especially at regional scales. We should note,

however, that the outlier behavior of RX1day changes vis-à-vis
the model statistics over this mid-Atlantic basin is not obvi-

ously symptomatic of a bias in either model sensitivity to

FIG. 7. Histograms of simulated RX1day change (%) for drain-

age basins of the (top) mid-Atlantic and (bottom) California.

Histograms are derived from 324 CAM (blue), 2500 ECHAM5

(green), and 625 MRI (purple) paired differences of factual vs

counterfactual experiments. Bold red tic marks denote the observed

RX1day changes. The probability distribution functions are non-

parametric curves constructed using the R software program, which

utilizes a kernel density estimation and a Gaussian smoother.

TABLE 3. Standardized RX1day mean differences for factual vs

counterfactual experiments. Standardized values significant at the

5% level are boldface and italic.

River basin CAM ECHAM MRI

New England 20.1 1.0 1.0

Mid-Atlantic 0. 1.3 1.2

South Atlantic Coast 0.3 1.6 0.6

Great Lakes 1.0 2.3 2.5

Ohio 1.3 1.1 2.0

Tennessee 0.5 1.1 1.1

Upper Mississippi 0.7 1.5 2.6

Lower Mississippi 0.5 1.1 0.9

Souris–Red–Rainy 0.5 1.1 1.5

Missouri 0.7 1.2 1.5

Arkansas–Red–White 0.5 0.8 1.2

Texas Gulf Coast 0.5 0.7 20.2

Rio Grande 0.2 0.3 20.3

Upper Colorado 0.6 0.7 0.2

Lower Colorado 0. 20.1 -0.4

Great Basin 0.7 0.5 0.4

Pacific Northwest 0.4 0.6 0.8

California 0.2 0.3 -0.5
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forcing or intensities of simulated internal variability. This is

suggested by the fact that observed change magnitudes over all

individual 18 U.S. major river basins reside consistently within

the combined model ranges in a manner expected from sam-

pling (see Fig. S2).

For the California basin, the three models are in somewhat

closer agreement with each other and reveal no appreciable

signal of RX1day change. Themost likely value of the sampling

distribution, as indicated by the similar statistical modes of the

CAM and ECHAMPDFs, is effectively no difference in heavy

daily precipitation under climate forcing of the early twenty-

first century compared to the early twentieth century, whereas

the MRI model indicates a mean decline of 0.5 standardized

departures which is significant at the 5% level. The observed

trend toward moderate declining RX1day magnitudes is

therefore quite consistent with these model indications. The

internal variability in RX1day trends over the California basin

(;6%) is comparable to that over the mid-Atlantic basin

(;5%), and thus the small model signals in the former region

are mostly overwhelmed by the magnitude of noise.

c. Climate change effects on atmospheric dynamics and the

western U.S. RX1day decline

Given the prevailing drought conditions post-2000, it might

not be surprising that western U.S. extreme daily precipitation

has become less intense in recent years. Sometimes referred to

as the Millennium Drought, its intensity is believed to have

rivaled multidecadal western U.S. dry spells in the paleo-

climatic record (e.g., Williams et al. 2020). Nonetheless, the

observed decline in heavy daily precipitation intensities over

large portions of the West, despite increasing PW, is remark-

able for its striking contrast to the large increases over the

eastern United States and most midlatitude locations (e.g.,

Dittus et al. 2016). The physical basis for this weak signal of the

West is a dynamical effect, which acts in opposition to the in-

crease that would have been expected from thermodynamics of

global warming alone. The new experimental results presented

herein make a strong case that the absence of an observed

change in RX1day over theWest is likely a dynamical signal of

climate change at least for the global SST warming patterns

used here, and has not been merely a sampling artifact of in-

ternal dynamical variability.

To illustrate, we focus on the winter season (January–

February) when the wettest day of the year occurs over much

of the West (see Fig. 3), and thus is most relevant for under-

standing the cause for the weak western U.S. RX1day change

signal in the models. The 1999–2018 period that captures the

Millennium Drought has witnessed sustained below normal

precipitation over much of the West (Diaz and Wahl 2015;

Williams et al. 2020), and as shown in Fig. 4 has experienced

reduced RX1day intensities. Both mean and extreme precipi-

tation has responded to a tropospheric circulation pattern

consisting of 700 hPa anomalous high pressure over the Pacific

Northwest (Fig. 8, top). Reanalysis data show that this circu-

lation pattern has induced anomalous downward vertical mo-

tion in the West (not shown), which has likely inhibited both

the mean precipitation and also the intensity of wintertime

daily extremes (see e.g., O’Gorman and Schneider 2009).

The ensemble CAM and ECHAM responses2 to climate

change are each characterizedby a similar atmospheric circulation

pattern over the Pacific Northwest that each resemble the ob-

served change (Fig. 8, bottom), with anomalous high pressure

over that region which appears to be part of a wave train resem-

bling elements of the classic Pacific–North American circulation

pattern (Barnston and Livezey 1987). Analysis of the simulated

midtroposphericmean vertical motion changes in winter reveals a

trend toward greater sinking motion (not shown), which would

inhibit the occurrence of extreme precipitation.

Our interpretation is that the weak signal of RX1day change

in the West is not due to the absence of sensitivity to climate

change per se. Rather, the model experiments indicate it is due

to the tendency for climate change’s thermodynamic driving

toward increased heavy precipitation to be compensated by

climate change’s regional dynamical driving toward decreased

heavy precipitation. Analogous compensating effects have

been noted in future projections of midlatitude regional

extreme precipitation change, in particular over the

Mediterranean region (Pfahl et al. 2017). However, the Pfahl

et al. study that decomposed projected future changes in heavy

daily precipitation into thermodynamic and dynamic contri-

butions does not show a dynamical suppression over the West.

Whether the suppression identified herein during the historical

period is particular to a sensitivity to observed changes in SSTs

that drive our atmospheric models that is distinct from SST

effects in coupled model projections is unclear. However, it is

evident that such an effect has been an important factor leading

to the strong spatial heterogeneity in U.S. heavy precipitation

trends since the early twentieth century.

A further comparison of the model circulation responses

reveals downstream differences, in particular a high pressure in

CAM’s response that extends over the eastern United States,

while such a feature is absent in the ECHAM response and

absent also in the observed change pattern. This high pressure

in CAM would be expected to also inhibit heavy precipitation

in the eastern United States. These model structural differ-

ences in wavy circulation responses to climate change thus

appear to be physically consistent with differences in the spa-

tial diversity of U.S. RX1day responses among the models

studied herein. It is important to note, however, that the wet-

test day of the year in the mid-Atlantic occurs in late summer

not late winter, and these winter circulation response dis-

crepancies may be immaterial to determining the U.S. RX1day

change map overall. Since the mid-Atlantic experiences its

RX1day occurrences in September/October (see Fig. 4), we

therefore also examined that season’s 700-hPa height re-

sponses. The ensemble averaged CAM simulations yield a

regionally distinct and strong anticyclonic circulation over the

2 Results for theMRImodel circulation responses at 700 hPa are

not presented because the geopotential height data were unavail-

able to this project. However, sea level pressure data were avail-

able for all three models, and their factual versus counterfactual

SLP responses were similar to each other, consisting of anoma-

lously high surface pressure across the Gulf of Alaska and western

Canada analogous to the tropospheric circulation pattern of Fig. 8.
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U.S. Northeast, for which no counterpart is found in our other

models or in observations (see Fig. S4). The weak RX1day

ensemble mean response over the Northeast in CAM is thus

likely due to dynamical suppression compensating an other-

wise thermodynamic increase. This signal of an anticyclonic

circulation and its related subsidence appears not to be con-

sistent with observations (which could stem merely from

sampling), but it is also inconsistent with CMIP5 model pro-

jections for 1950–2100 that reveal a dynamical enhancement of

extreme precipitation over the East (Pfahl et al. 2017).

5. Summary and concluding remarks

Annual maximum one-day precipitation (RX1day) has in-

creased 15%–25% in magnitude over parts of the eastern

United States since the early and mid-twentieth century,

while a 10% intensity decline has occurred over the far western

United States Yet all regions of the United States have expe-

rienced column precipitable water (PW) increases, implying

that the observed reversal in sign of RX1day trends when

transecting from east to west is inconsistent with notions of

thermodynamic control tied to water vapor availability.

Using atmospheric model simulations, we find that U.S.

RX1day events respond to climate change forcing differently

over the eastern compared to the western United States.

Experiments using three different models indicate an aggre-

gate sensitivity to forcing changes spanning the last century

that consists of 5%–10% increases in RX1day intensity over

the East and little or no change over the West. The resulting

spatially diverse pattern of climate change impacts was found

to be particularly prominent in two of the three models used

herein, and each model’s signal was positively correlated with

the observed trend pattern.

Two factors are argued to be mainly responsible for the re-

markable spatial diversity of observed RX1day changes. First,

the absence of appreciable RX1day increases over the West is

attributed to a dynamical effect of the observed centennial-

scale trends in SST, sea ice, and atmospheric composition. This

consists of a forced circulation pattern during winter––the

season of RX1day occurrences in the West––anchored by

anomalous high pressure over the Gulf of Alaska and the

Pacific Northwest. The model signal generally resembles the

observedwesternNorthAmerican circulation anomaly pattern

that has prevailed in recent decades. Through its driving of

large-scale sinking motion over the West, extreme precipita-

tion has been dynamically suppressed, an effect largely com-

pensating increases anticipated from thermodynamic effects of

global warming to date.

FIG. 8. (top) Observed January/February 700-hPa height change, and the ensemble mean simulated January/

February 700-hPa height change for (bottom left) CAM and (bottom right) ECHAM. Contour interval is 2m. The

observed height change is calculated as the difference of (1999–2018) minus (1948–67) based on NCEP–NCAR

reanalysis. The simulated changes are the difference of the factual minus counterfactual ensemble means.
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A second factor is sampling variability. Our model results

indicate the large observed RX1day increases over the mid-

Atlantic that anchor the U.S. pattern of zonal contrast can be

attributed to strong internal atmospheric variability rather

than being due to a particular heightened regional climate

change sensitivity. The basis for this interpretation is rooted in

our model results showing large amplitude RX1day changes

due to internal atmospheric variability on centennial time

scales. The magnitude of this internally generated variability

was comparable to the forced signal of increased RX1day in

the East, and far exceeded the much weaker forced signals in

the West. These experimental results––common among all

three models studied herein––thus support an explanation that

the striking 25% increase of RX1day intensity in the mid-

Atlantic basin has most likely been due to a combination of

moderate forced increases comingled with a strong articulation

of internal atmospheric variability.

An overarching purpose for explaining the historical

changes in extreme daily precipitation is to apply that knowl-

edge to expectations for coming decades. Having found evi-

dence that historical changes in boundary forcings favored

larger RX1day increases in the eastern than in the western

United States, a reasonable question is whether our results

support a projection that such regional differences will con-

tinue to prevail, or perhaps intensify as global warming in-

creases. Our view is that such an outcome constitutes a

plausible scenario for near-term (decadal) conditions based

simply on the continuation of the long-term trend patterns.

Because our model sensitivities are robust to using the zonal

mean trend or the spatial pattern (MRI) of SST trend, we put

more credence in an anthropogenic origin of these trends and

thus anticipate some degree of at least near-term persistence.

But confidence must be tempered by the reality of internal

variability, and also by structural uncertainty in simulated re-

gional details of the forced signal of RX1day change.

In that regard, it is important to recognize some of the lim-

itations of the modeling results presented. It was noted, for

instance, that one of the models used herein was unable to

simulate RX1day increases as large as observed in the mid-

Atlantic region within its population sample, while the other

two models required invoking a very large-amplitude occur-

rence of natural variability. One aspect concerns model dif-

ferences in dynamical sensitivities to climate change forcings.

Another concerns the character of internal atmospheric vari-

ability itself. Empirical analysis has shown that an important

contributor to the observed mid-Atlantic RX1day increases

has been tropical cyclones occurring more frequently over the

Northeast during recent decades (Kunkel et al. 2012). Kunkel

et al. (2010) also suggest that the increase in U.S. heavy rainfall

amounts due to tropical cyclones is not due to frequency in-

creases alone but also because such storms are producing

heavier rainfall. There is growing evidence that anthropogenic

climate change is contributing to heavier rainfall in tropical

cyclones (e.g., Risser and Wehner 2017; van Oldenborgh et al.

2017), even while attribution of changes in the frequency or

tracks of Atlantic tropical storms is challenged by their large

intrinsic decadal variability and the smallness of the human-

induced climate change impact to date (Knutson et al. 2019).

Insofar as all the models used herein have inadequate resolu-

tion to generate realistic tropical cyclone statistics, they un-

derestimate the internal variability of RX1day events in the

mid-Atlantic and other U.S. regions prone to tropical cyclone–

related rains. The models are thus likely missing a contribution

to variability of extreme rainfall in the Northeast that has been

known to be a factor in recent decades. Recognizing the po-

tency of unforced atmospheric dynamics, a scenario in which

internal variability could mute if not reverse the observed

upward trend in eastern U.S. RX1day magnitudes cannot be

discounted.

A question also turns to the RX1day climate change signal

itself. The spatial diversity of the U.S. signal estimated in our

experiments was based on a particular treatment of boundary

forcings, and the issue is whether our results are especially

dependent on the manner in which those were constructed for

the historical record, and also whether that historical sensitivity

will be robust to future forcing changes. Concerning the first

issue, the simulated sensitivity of U.S. RX1day to climate

change depends to a large degree on the so-called global

warming pattern, which we removed from the actual ocean

surface boundary states in order to estimate climate forcing

absent human influence (in addition to adjustments made to

atmospheric chemical composition and aerosols). Some mea-

sure of robustness was provided by employing two observa-

tional estimates of the global SST warming, each derived from

historical observations: one based on the zonally averaged

trends and the other based on a two-dimensional field of the

trend. There is also uncertainty in the pattern of long-term

trends among different gridded SST datasets, due largely to

differences in reconstruction and interpolation methodology.

This uncertainty can be reduced by applying an ENSO filter to

the data. When this is done, the residual SST trend for 1900–

2010 is quite similar among four datasets used in Solomon and

Newman (2012) consisting of a strengthening of the SST gra-

dient across the Indo-Pacific, similar to the unfiltered COBE

trend used in the MRI experiments.

Alternatively, CMIP climate models can be used to estimate

the SST change patterns, an approach used in other event at-

tribution studies (e.g., Pall et al. 2011; Christidis et al. 2013;

Ciavarella et al. 2018). This approach has the benefit of more

directly employing a change in lower boundary conditions that

can be directly attributed (in the model) to human-induced

climate change, whereas the observed change pattern will

contain elements of historical internal coupled variability. A

weakness of that approach is that CMIP models have consid-

erable biases in their simulations of the tropical Pacific SST

climatology and variability. Rescaling of simulated trends can

be applied using optimal fingerprinting detection methods

(Kay et al. 2011), yet the underlying coupled model biases that

determine the fingerprints themselves remain problematic.

Regardless of method, it is important to recognize the lim-

ited detectability of a human-induced SST trend over the

tropical central and eastern Pacific during the instrumental

period (Knutson et al. 2013). Temperature change in this

region of the World Ocean is critical for determining the

character of regional U.S. climate changes, especially for

precipitation patterns (e.g., Shin and Sardeshmukh 2010;
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Hoerling et al. 2010, 2016). To be sure, models used herein

yielded similar climate signals for U.S. RX1day changes (especially

ECHAM and MRI), even though the MRI experiments were

subjected to the two-dimensional observed SST change pattern

while CAM and ECHAM employed its zonally averaged compo-

nent only. It is indeed noteworthy that even in experiments that

included only a zonally symmetric representation of long-term SST

change, a zonally asymmetric wavy response of the atmosphere

occurred. Further experimentation is required to untangle the ef-

fects of pure, human-induced climate change from effects of in-

ternal multidecadal- and centennial-scale SST variability.

Concerning the second issue, projections of twenty-first-

century climate change indicate an El Niño–like tropical SST

warming pattern in which Indo-Pacific SST gradients weaken,

apparently reversing the strengthening that occurred in the

instrumental period (e.g., Collins et al. 2010). The effect of this,

if such projections verify, is to generate a midlatitude dynam-

ical atmospheric response itself resembling the El Niño tele-

connection. This includes increased winter precipitation in

California (Allen and Luptowitz 2017) and an associated in-

crease in extreme daily precipitation events (see, e.g., Sillmann

et al. 2013). Thus, our result showing a forced signal of no

change in RX1day intensity over the West during the instru-

mental record may be viewed as a transient signal, one that

could reverse as dynamical driving together with the overall

thermodynamic increases expected from water vapor availabil-

itymakes extreme rainfall eventsmore intense. Yet,models with

particularly poor ENSO variability have tended to exhibit the

largest El Niño–like SST expressions of climate change (e.g.,

Collins et al. 2005), muting confidence in the emergence of

such a pattern and its regional impacts.

These matters are ripe for analysis using the new suites of

CMIP6models. Particularly intriguing are experiments of both

atmospheric and coupled ocean–atmospheric models that

employ appreciably higher spatial resolution in both the at-

mosphere and ocean than has previously been available for

climate studies (Haarsma et al. 2016). The experiments are

expected to provide more realistic simulations of variability

and may thereby offer more reliable indications of regional

climate impacts, especially for extreme events.
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